Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2013 subscription price: US$2,395 (Print, ISSN# 1934-578X); US$2,395 (Web edition, ISSN# 1555-9475); US$2,795 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Two New Chalcones from the Flowers of *Clerodendrum inerme*

Shaik Khadar Shahabuddin\(^a\), Rachakunta Munikishore\(^b\), Golakoti Trimurtulu\(^b\), Duvvuru Gunasekar\(^ab\), Alexandre Deville\(^c\) and Bernard Bodo\(^c\)

\(^a\)Natural Products Division, Department of Chemistry, Sri Venkateswara University, Tirupati-517 502, India
\(^b\)Laila Impex R&D Centre, Unit 1, Phase III, Jawahar Autonagar, Vijayawada-520 007, India
\(^c\)Laboratoire de Chimie et Biochimie des Substances Naturelles, USM 0502 MNHN-UMR 5154, CNRS, 63 rue Buffon 75005 Paris, France

duvvuru.gunasekar@gmail.com

Received: February 9\(^{th}\), 2013; Accepted: February 24\(^{th}\), 2013

Two new chalcones, 3-hydroxy-3',4'-dimethoxylchalcone (1) and 3,2'-dihydroxy-3',4'-dimethoxylchalcone (2), were isolated from the flowers of *Clerodendrum inerme* (L.) Gaertn together with two known flavones, 7-O-methylwogonin (3) and eucalyptin (4). The structures of the new compounds 1 and 2 have been established by extensive 2D-NMR and ESI-TOFMS studies.

Keywords: *Clerodendrum inerme*, Verbenaceae, Flowers, Chalcones.

The genus *Clerodendrum* Linn. (Syn. *Clerodendron*), family Verbenaceae, consists of 400 species of which 18 occur in India [1]. *C. inerme* (L.) Gaertn is a straggling ornamental shrub chiefly found in coastal regions of India. Various parts of this species have been traditionally used as a febrifuge, antiperiodic, antipyretic, alterative and also in the treatment of tetanus, scrofula, rheumatism and skin diseases [2a-c]. Earlier studies on different parts of this plant have resulted in the isolation of several flavones, di-and triterpenes, iridoids, neolignans and sterols [3a-g]. In our systematic search for polyphenolic constituents from Indian medicinal plants, we have investigated the flowers of *C. inerme* and report herein the isolation and structural elucidation of two new chalcones, 3-hydroxy-3',4'-dimethoxylchalcone (1) and 3,2'-dihydroxy-3',4'-dimethoxylchalcone (2), besides two known flavones, 7-O-methylwogonin (3) and eucalyptin (4).

Compound 1, obtained as pale yellow crystals, showed a [M+H]⁺ ion at m/z 285.1120 in its positive ESI-TOFMS corresponding to the molecular formula C\(_{17}\)H\(_{16}\)O\(_4\), which was corroborated by the \(^13\)C NMR spectrum, which displayed 17 carbon signals. The IR absorption bands at 3435 and 1635 cm⁻¹ correspond to phenolic hydroxyl and carbonyl functions, respectively. The UV absorption maxima of 1 in MeOH at 237 (sh) and 333 nm, and a pair of olefinic protons at \(\delta 7.79\) (1H, d, \(J = 15.6\) Hz, H-β) and 7.69 (1H, d, \(J = 15.6\) Hz, H-β) in the ¹H NMR spectrum suggested compound 1 to be a chalcone derivative [4a,b]. The ¹H NMR spectrum also showed a broad signal for a phenolic hydroxyl group at \(\delta 8.50\) and a sharp six-proton singlet for two methoxyl groups at \(\delta 3.90\). The ¹H NMR spectrum further showed ABX-type aromatic proton signals at \(\delta 7.84\) (1H, dd, \(J = 8.4, 2.1\) Hz), 7.66 (1H, d, \(J = 2.1\) Hz) and 7.05 (1H, d, \(J = 8.4\) Hz), and the former two signals were assigned to H-6' and H-2' as these protons showed HMBC correlations (Figure 1) with the carbon at \(\delta 188.2\). This fixes the ortho-coupled aromatic proton signal at \(\delta 7.05\) to H-5', further supported by HMBC correlation of this proton with C-6' and C-1'. The two methoxyl groups at \(\delta 3.90\) were found to be attached to C-3' and C-4' based on the HMBC correlations with these carbons at 150.3 and 154.6 ppm, and two strong NOE correlations with H-2' (\(\delta 7.66\)) and H-5' (\(\delta 7.05\)), respectively in its NOESY spectrum (Figure 1). The four aromatic protons of ring B appearing at \(\delta 7.28\) (1H, m, H-6), 7.27 (1H, m, H-5), 7.25 (1H, m, H-2) and 6.93 (1H, ddd, \(J = 7.8, 2.0, 2.0\) Hz, H-4), respectively are consistent with a 1,3-disubstituted ring B [5]. This fixes the attachment of the non-chelated phenolic hydroxyl at \(\delta 8.50\) to C-3 (\(\delta 158.5\)), which showed cross correlations with H-2 (\(\delta 7.25\)), H-4 (\(\delta 6.93\)) and H-5 (\(\delta 7.27\)). Thus, from the foregoing spectral studies the structure of compound 1 was elucidated as 3-hydroxy-3',4'-dimethoxylchalcone.

Compound 2, isolated as yellow amorphous powder, showed a [M+H]⁺ ion at m/z 301.1100 in its positive ESI-TOFMS, consistent with the molecular formula C\(_{17}\)H\(_{16}\)O\(_5\). The ¹C NMR spectrum showed signals for all the 17 carbons of the molecule. The UV absorption maxima of 2 in MeOH at 240 (sh) and 347 nm, and the presence of a pair of AB doublets (\(J = 15.5\) Hz) of transolefinic protons at \(\delta 7.86\) (H-α) and 7.81 (H-β) in the ¹H NMR spectrum suggested compound 2 to be a chalcone derivative [4a,b]. The IR absorption bands at 3435 and 1635 cm⁻¹ correspond to phenolic hydroxyl and carbonyl functions, respectively. The ¹H NMR spectrum of 2 showed two D\(_2\)O exchangeable phenolic hydroxyl signals at \(\delta 13.27\) and 8.60, assigned to a chelated hydroxyl group at C-2' and a non-chelated hydroxyl group, respectively. It also showed two sharp singlets for two methoxyl groups at \(\delta 3.92\) and 3.78. The ¹H NMR spectrum displayed two ortho-coupled aromatic proton signals at \(\delta 8.01\) (1H, d, \(J = 9.1\) Hz) and 6.68 (1H, d, \(J = 9.1\) Hz) assigned to H-6' and H-5' protons as they showed HMBC correlations (Figure 2) with C-2' and carbonyl carbon, and C-1' and C-6', respectively. The methoxyl group at \(\delta 3.92\) was placed at C-4' based on its HMBC correlation with this carbon at 159.9 ppm and a strong NOE correlation (Figure 2) with H-5' (\(\delta 6.68\)). The methoxyl group at \(\delta 3.78\) was placed at C-3' based on the HMBC correlation of the methoxyl protons with this carbon at 137.4 ppm, which showed cross correlation with H-5'.
Experimental

General experimental procedures: Melting points, Kofler hot-stage apparatus; UV, Shimadzu UV-1800 spectrophotometer; IR, JASCO FTIR-5300 spectrophotometer; NMR, Bruker Avance 400; Positive ESI-TOFMS, API Q-Star Pulsar I of Applied Bio-system.

Plant material: The flowers of C. inerme, collected from Tirumala Hills, Andhra Pradesh, South India in February 2011, were identified by Dr K. Madhava Chetty, Plant Taxonomist, Department of Botany, Sri Venkateswara University, Tirupati, India, where a voucher specimen (DG.102) has been deposited.

Extraction and isolation: The shaded-dried and powdered flowers of C. inerme (3.2 kg) were successively extracted with n-hexane (3 x 8 L), Me2CO (3 x 8 L) and MeOH (3 x 8 L) at room temperature. The concentrated n-hexane extract (135 g) on purification over a silica gel column using a n-hexane-EtOAc step gradient (1:9) yielded 3 (48 mg). The Me2CO (42 g) and MeOH (38 g) extracts were found to be similar on paper and thin layer chromatograms and hence combined, defatted with n-hexane and the residue obtained (64 g) was purified over a silica gel column using n-hexane-EtOAc step gradient (9:1, 7:3 and 4:6) to afford 4 (14 mg), 1 (45 mg), and 2 (39 mg) respectively.

References

3-Hydroxy-3',4'-dimethoxychalcone (1)
Pale yellow crystals (MeOH).
MP: 113-115°C.
UV (MeOH) λmax (log ε): 237 (3.11) (sh) and 333 (3.26) nm.
IR (KBr) νmax: 3304 (OH), 2962, 2932, 2843, 2600, 2025, 1753, 1647 (C=O), 1593, 1570, 1516, 1446, 1419, 1373, 1348, 1261, 1199, 1151, 1076, 914, 827, 844, 817, 787, 767, 736 cm⁻¹.
1H NMR (Me4CO-d): δ 8.50 (1H, brs, OH-3), 7.84 (1H, ddd, J= 8.4, 2.1 Hz, H-6'), 7.79 (1H, d, J= 15.6 Hz, H-α), 7.69 (1H, d, J= 15.6 Hz, H-β), 7.66 (1H, d, J= 2.1 Hz, H-2'), 7.28 (1H, m, H-6), 7.25 (1H, m, H-2), 7.05 (1H, d, J= 8.4 Hz, H-5'), 6.93 (1H, ddd, J=7.8, 2.0, 2.0 Hz), 3.90 (6H, s, OMe-3',4').
13C NMR (Me4CO-d): δ 188.2 (C-O), 158.3 (C-5), 154.6 (C-4'), 150.3 (C-3'), 144.0 (C-β), 137.6 (C-1), 132.0 (C-1'), 130.8 (C-5), 123.9 (C-6'), 122.7 (Cα), 120.9 (C-6), 118.2 (C-4), 115.7 (C-2'), 111.8 (C-2'), 111.5 (C-5'), 56.1 (OMe-3',4').
ESI-TOFMS (positive ion mode) m/z: 285.1120 [M+H]+ (calcd for C17H16O6, 285.1127).

3, 2'-Dihydroxy-3', 4'-dimethoxychalcone (2)
Yellow amorphous powder (MeOH).
MP: 138-140°C.
UV (MeOH) λmax (log ε): 240 (3.13) and 347 (3.64) nm.
IR (KBr) νmax: 3435 (OH), 2941, 2841, 1838, 1635 (C=O), 1562, 1504, 1448, 1421,1348, 1278, 1226, 1130, 1074, 999, 978, 912, 848, 825, 779, 742, 698, 673 cm⁻¹.
1H NMR (Me4CO-d): δ 13.27 (1H, s, OH-2'), 8.60 (1H, s, OH-3), 8.01 (1H, d, J= 9.1 Hz, H-6'), 7.86 (1H, d, J= 15.5 Hz, H-α), 7.81 (1H, d, J= 15.5 Hz, H-β), 7.32 (1H, ddd, J= 8.0, 7.8 Hz, H-5'), 7.29 (1H, dd, J= 8.0, 7.8 Hz, H-7), 7.27 (1H, dd, J=2.0, 2.0 Hz, H-2'), 6.95 (1H, ddd, J= 7.8, 2.0, 2.0 Hz, H-4'), 6.68 (1H, dd, J= 9.1 Hz, H-5'), 3.92 (3H, s, OMe-4') 3.78 (3H, s, OMe-3').
13C NMR (Me4CO-d): δ 193.6 (C-O), 159.9 (C-4'), 159.2 (C-2'), 158.7 (C-3), 145.3 (C-β), 137.4 (C-3'), 137.1 (C-1), 130.8 (C-5), 127.6 (C-6'), 121.6 (Cα), 121.2 (C-6), 118.7 (C-4), 116.2 (C-1'), 116.1 (C-2'), 104.2 (C-5'), 60.3 (OMe-3'), 56.5 (OMe-4').
ESI-TOFMS (positive ion mode) m/z: 301.1100 [M+H]+ (calcd for C17H16O6, 301.1080).

Acknowledgements - The authors thank Dr Arul Marie and Mr Lionel Dubost, Laboratoire de Chimie et Biochimie des Substances Naturelles, MNHN, Paris, France for providing mass spectral data.
Volatile Composition of Six Horsetails: Prospects and Perspectives
Françoise Fons, Didier Froissard, Jean-Marie Bessière, Alain Fruchier, Bruno Buatois and Sylvie Rapior

Chemical Compositions of the Rhizome, Leaf and Stem Oils from Malaysian Hornstedtia leonurus
Nor Akmalazura Jani, Hasnah Mohd. Sirat, NorAzah Mohamad Ali and Azrina Aziz

Effect on Emotional Behavior and Stress by Inhalation of the Essential oil from Chamaecyparis obtusa
Hikaru Kasuya, Erika Hata, Tadaaki Satoa, Masaki Yoshikawa, Shinichiro Hayashi, Yoshinori Masuo and Kazuo Koike

Chemical Composition and Antibacterial Activity of Rhizome Oils from Five Hedychium Species
Ratchuporn Suksathan, Siriwoot Sookkhee, Somboon Anuntalabhochai and Sunee Chansakaow

Chemical Composition and Antimicrobial Activity of Three Essential Oils from Curcuma wenyujin
Jingjing Zhu, Agnieszka D. Lower-Nedza, Meng Hong, Song Jiec, Zhimin Wang, Dong Yingmao, Christine Tschiggerl, Franz Bucar and Adelheid H. Brantner

Essential Oil Composition and Antimicrobial Activity of Aerial Parts and Ripe Fruits of Echinophora spinosa (Apiaceae) from Italy
Daniele Fraternale, Salvatore Genovese and Donata Ricci

Composition and in vitro Anticancer Activities of the Leaf Essential Oil of Neolitsea variabililima from Taiwan
Yu-Chang Su, Kuan-Ping Hsu, Eugene I-Chen Wang and Chen-Lung Ho

Review/Account

Natural Products from Marine Algae of the Genus Osmundaria (Rhodophyceae, Ceramiales)
Kelvin Osako and Valéria Laneuville Teixeira

Phenols, Alkaloids and Terpenes from Medicinal Plants with Antihypertensive and Vasorelaxant Activities. A Review of Natural Products as Leads to Potential Therapeutic Agents
Francesco Maione, Carla Cicala, Giulia Musciacco, Vincenzo De Feo, Anibal G. Amat, Armando Ialenti and Nicola Mascolo

Diosmin – Isolation Techniques, Determination in Plant Material and Pharmaceutical Formulations, and Clinical Use
Anna Bogucka – Kocka, Michal Woźniak, Marcinfeldo, Janusz Kocki and Katarzyna Szewczyk
Contents

Original Paper	Page
Anti-melanogenesis Constituents from the Seaweed *Dictyota coriacea* | 427
Ryeo Kyeong Ko, Min-Chul Kang, Sang Suk Kim, Tae Heon Oh, Gi-Ok Kim, Chang-Gu Hyun, Jin Won Hon and Nam Ho Lee

Methyl Carnosate, an Antimicrobial Diterpene Isolated from *Salvia officinalis* Leaves | 429
Elisa Chiamati, Fabio Mastrogiovanni, Maria Valeri, Laura Salvini, Claudia Bonechi,Nilufar Zokirzohnovna Mamadalieva, Dili Fuanga Embergieva, Anna Rita Taddei and Antonio Tiezzi

Cytotoxicity of Meroterpenoids from *Sargassum siliquastrum* against Human Cancer Cells | 431
Jung In Lee, Myoung K. Kwak, Hee Y. Park and Youngwan Seo

Isolation of Methyl 27-caffeoyloxyconolane – A New Oleane Triterpenoid from the Roots of *Hibiscus vitifolius* | 433
Duraisami Ramasamy and Aribamuthu Saraswathy

Synthesis and Cytotoxic Activity of New Betulin and Betulinic Acid Esters with Conjugated Linoleic Acid (CLA) | 435
Barbara Tubek, Pawel Minila, Natalia Nizegoda, Katarzyna Kemplinska, Joanna Wietrzyk and Czeslaw Wawrzeiczyn

Analysis of Pyrrolizidine Alkaloids and Evaluation of Some Biological Activities of Algerian *Senecio delphinifolius* (Asteraceae) | 439
Soukaina Tidjani, Philippe N. Okusa, Amar Zellagu, Laetitia Moreno Y Banuls, Caroline Stévigny, Pierre Duez and Salah Rhouati

Berbanine: a New Isoquinoline-isoquinolone Alkaloid from *Berberis vulgaris* (Berberidaceae) | 441
Anna Hošťálková, Zdeněk Novák, Milan Pour, Anna Jirošová, Lubomír Opletal, Jiří Kunč and Lucie Cahliková

Diecinterine Production in Callus and Cell Suspension Cultures of *Stephania venosa* | 443
Tharita Kitisiripanya, Jukrapun Komaikul, Chuenanapha Atsawinkowit and Warapon Patalun

New Flavon and Alkyl α,β-Lactones from the Stem Bark of *Horsfieldia superba* | 447
Nabil Ali Al-Mekhlafi, Khozirah Shaari, Faridah Abas, Ethyl Jeyaseela Jeyaraj, Johnson Stanslas, Shaik Ibrahim Khalivulla and Nordin H. Lajis

New Flavonol Triglycosides from the Leaves of Soybean Cultivars | 453
Yoshinori Murai, Ryoji Takahashi, Felipe Rojas Rodas, Junichi Kitajima and Tsukasa Iwashina

Melitidin: A Flavanone Glycoside from *Citrus grandis* 'Tomentosa' | 457
Wei Zoi, Yonggang Wang, Haibin Liu, Yulong Luo, Si Chen and Weiwei Su

Two New Chalcones from the Flowers of *Clerodendrum inerme* | 459
Shaik Khadar Shahabuddin, Rachakunta Munikishore, Golakoti Trimurtulu, Duvvuru Gunasekar, Alexandre Deville and Bernard Bodo

A Novel Phenolic Compound from *Phyllanthus emblica* | 461
Gaimie She, Ruiyang Cheng, Lei Sha, Yixia Xu, Renbin Shi, Lanzhen Zhang and Yajian Guo

Anti-austeric Activity of Phenolic Constituents of Seeds of *Arctium lappa* | 463
Yasuhiro Tezuka, Keichi Yamamoto, Suresh Awale, Feng Li, Satoosi Yomoda and Shigetoshi Kadota

Bioactive Lignans from the Leaves and Stems of *Schisandra wilsoniana* | 467
Guang-Yu Yang, Rui-Rui Wang, Zhong-Hua Gao, Yin-Ke Li, Liu-Meng Yang, Xiao-Nian Li, Shan-Zhai Shang, Yong-Tang Zheng, Wei-Lie Xiao and Hsiao-Dong Sun

Antioxidative / Acetylcholinesterase Inhibitory Activity of Some Asteraceae Plants | 471
Ivana Generalic Mekinč, Francro Burčel, Ivica Blažević, Danjela Skroza, Daniela Kerum and Višnja Katalinić

Antioxidant and Antimicrobial Activities, and Phenolic Compounds of Selected *Inula* species from Turkey | 475
Alper Gökbulut, Onural Özhan, Basri Satılmaz, Danijela Skroza, Daniela Kerum and Višnja Katalinić

Two New Dihydrostilbenoid Glycosides Isolated from the Leaves of *Litsea coreana* and their Anti-inflammatory Activity | 479
Wenjian Tang, Weli Lu, Xiaqing Cao, Yilong Zhang, Hong Zhang, Xiongwen Lv and Jun Li

Inhibitory Activity of Benzophenones from *Anemarrhena asphodeloides* on Pancreatic Lipase | 481
Yang Hee Jo, Seon Beom Kim, Jong Hoon Ahn, Qing Liu, Bang Yeon Hwang and Mi Kyeong Lee

Identification and Quantification of Furanoconumarios in Stem Bark and Wood of Eight Algerian Varieties of *Ficus carica* by RP-HPLC-DAD and RP-HPLC-DAD-MS | 485
Samia Rouaiguia-Bouakkaz, Habiba Amira-Guebailia, Céline Rivière, Jean-Claude Delaunay, Pierre Waffo-Téguo and Jean-Michel Mériton

UPLC-Q-TOF/MS Coupled with Multivariate Statistical Analysis as a Powerful Technique for Rapidly Exploring Potential Chemical Markers to Differentiate Between Radix Paeoniae Alba and Radix Paeoniae Rubra | 487
Nian-cui Luo, Wen Ding, Jing Wu, Da-wei Qian, Zhen-hao Li, Ye-fei Qian, Jian-ming Guo and Jin-ao Duan

Antimicrobial Activity of Crude Methanolic Extract from *Phyllanthus niruri* | 493
Darah Ibrahim, Lim Sheh Hong and Ninhnanhantam Kuppan

Cellulose Contents of Some Abundant Indian Seaweed Species | 497
Arup K. Siddhanta, Sanjay Kumar, Gaurav K. Mehta, Mahesh U. Chhatbar, Mihir D. Oza, Naresh D. Sanandiya, Dharmesh R. Chejara, Chirag B. Godiya and Stalin Kundaveeti

Anti-inflammatory Potential of Silk Sericin | 501
Pornamong Aramwit, Pasarapa Toviwat and Tearapol Sirichana

Composition of Essential Oil from Aerial and Underground Parts of *Geum rivale* and *G. urbanum* Growing in Poland | 505
Aleksandra Owczarek, Jan Gudej and Agnieszka Kice

Continued Inside backcover